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Problem formulation

Data collection
(historical information
about clients)

P

Prediction
(clients loyalty)

past

present

future

] time
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Example 1 (Deloitte competition)

More than 100 features

(policy type, payments, Will customer
number of claims, churn the policy?
benefits and so on)

past present future time

» about 400 000 policies
» about 11 000000 records

kaggle.com/c/deloitte-churn-prediction



Example 2 (Etihad Airline)

Information
about passengers Will passenger
(flight history, age, become silver?

occupation and so on)

P ‘

past present future time




Related HOWTO

v

How to estimate the accuracy?

v

How to work with different historical depths?

v

How to handle huge amount of historical information?

v

How to choose the predictive model?
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How to estimate the accuracy?

Training Validation

data data

past present future time

» cross validation is a key procedure
» choose an appropriate loss function
» keep distributions:

P(X) ~ Ptrain(X) ~ Pvaiidation(X) ~ Prest(X)



Example of loss functions

y - target variable
x = (Xy,...,Xn) - vector of features
y = f(x) - predictive model

» Mean squared error

» LoglLoss
Ely-Iny+(1—-y)-In(1-y)]
» Area under the curve (AUC)

P(positive example is higher than negative example)

T.Hastie, R.Tibshirani and J.Friedman "The elements of statistical
learning.” Springer, 2009
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How to work with different historical depths?

n A
T
Q
©
Historical information Prediction
about clients (clients loyalty)
past present future

» feature engineering is a key procedure
» unsupervised technique is very useful
» visualize your data

time
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Example of features

» Statistics by the historical features with "sliding window”

» maximum during the last month
» the average change during the last year

» Unsupervised features

» t-distributed stochastic neighbor embedding (t-SNE)
» principal component analysis (PCA)
» autoencoders

» Other ideas

» binary feature by discretized continuous features
> L.

"lvdmaaten.github.io/tsne/

2www.deeplearningbook.org
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Feature engineering in Deloitte

Completed * $70,000 « 37 teams

Deloitte As the World Churns

Tue 22 Oct 2013 - Sat 21 Dec 2013 (2 years ago)

Dashboard

This leaderboard is calculated on approximately 25% of the test data.

Public Leaderboard - As the World Churns

The final results will be based on the other 75%, so the final standings may be different.

Team Name #model uploaded * in the money
Dmitry Efimov *

Leustagos & Gxav  *

Michael Jahrer & Jeong-Yoon Lee
ivo and BreakfastPirate

Datrik Intelligence

FAndy & Sen

An apple a day

agdavis t

alegro

S&B500

Score @

0.81917

0.81869

0.81721

0.81457

0.81442

0.81326

0.81237

0.81176

0.80947

0.80918

Entries

155

78

73

174

7

72

75

See someone using multiple accounts?

Last Submission UTC (est - Last Submission)

Sat, 21 Dec 2013 14:21:48 (-20h)

Sat, 21 Dec 2013 22:04:03 (-6.3h)

Sat, 21 Dec 2013 22:26:29 (-0.1h)

Sat, 21 Dec 2013 22:05:08 (-4.4h)

Sat, 21 Dec 2013 23:46:07 (-0.3h)

Sat, 21 Dec 2013 19:36:50

Sat, 21 Dec 2013 23:47:07 (-1.6h)

Sat, 21 Dec 2013 16:53:22

Sat, 21 Dec 2013 23:26:47 (-19.7h)

Sat, 21 Dec 2013 22:30:42 (-0.6h)

Let us know.
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Example of visualization using t-SNE features
» Visualization helps to catch important facts about data

kaggle.com/c/santander-customer-satisfaction
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How to handle huge amount of historical information?

v

downsampling (remember to keep distributions)

v

batch optimization

v

online algorithms

v

parallel computing

non-standard ideas

v
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How to choose the predictive model?

» Parametric

» Regressions
Kernel methods (SVM)
Bayesian approach
Neural networks

v vy

» Non parametric
» Decision trees

» Ensembling
» Boosting

'github.com/diefimov/MTH594_MachinelLearning

2Lectures by Andrew Ng on YouTube
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Regressions (general framework)

» Predictive model depends on parameters 6
y=1f(x,0)
» To find 6 we formulate an optimization problem

0 = argmin L(y, f(x.6)).

where L is a loss function

» Use optimization algorithm (e.g., SGD) to find the best
values for 0
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Bayesian approach

» Predictive model is a parametric family of distributions
p(x,y:0) = p(x,y|0) - p(0) = p(6]x,y) - p(x, y)
» To find 6 we formulate an optimization problem
0 = argmaxp(6|x.y),
» Use Bayes rule to solve it

p(x,y|0)p(9)
p(x,y)

(posterior  likelihood - prior)

p(@|x,y) = o p(x,y|8) - p(o)

E.T.Janes "Probability theory: logic of science.” Cambridge University
Press, 2003
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Decision trees

» Predictive model is non-parametric

y=1x)

» The resulted model can be visualized as

X[12]<=7.865
el
Tnl:/ N;nlse
X[5] <= 7437 X[12] <= 16085
mse = 0.0313

mse =0.01 "54
samples
e

samples = 106

/ value = 0.6485

X[10] <= 19.65
mse = 00175

T

X[7] <= 1.557
)

X[5] <= 6. sm
mse

vdlue = U 5857

ples
\alue = l)_4323

samples = 90
value =0.2798

mse =00 mse = 0.0082 mse =0.0 mse = 0.0062 mse = 0.0062 mse =0.0039 mse = 0.0053
samples sam samples = 21 samples = | samples = 129 samples = 14 samples = 54 samples = 36
value = | vatn 55704 | | vatoes 05095 | | vetues0a3s | | vahaooates | | vataes 05771 | | veloeso2382 | | s sds

T.Hastie, R.Tibshirani and J.Friedman "The elements of statistical
learning.” Springer, 2009
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Boosting

=11, x0) = (X1, ., Xn)

Algorithm 1 General boosting algorithm

1: fo(x) = Ely]

2: for k =1to Ndo o

3: evaluate currenterrors z=y — > fs(X1,...,Xn)
s=0

4:  train model fy to predict z

@

N
return > fi(X1,...,Xn)
k=0
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General strategy

v

Investigate the data manually

Choose loss function

v

v

Define the cross validation scheme

Generate features

v

v

Choose the algorithm
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Thank you! Questions?

Dmitry Efimov
diefimov@gmail.com
kaggle.com/efimov
github.com/diefimov
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