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Provided data

Device layer:
id, model, type

Time layer:
day, hour

Site layer:

| id, domain, category |

Basic features

Connection layer:
ip, type

J

Banner layer:

%Lposition, C1, C14-C21 |

Application layer:

| id, domain, category |




Notations

X: m x ndesign matrix

Myrain = 40428 967
Miest = 4577 464
n=23

y: binary target vector of size m
x!: column j of matrix X
X;: row i of matrix X

1 : . ,
o(z) = 1T oz sigmoid function




Evaluation
Logarithmic loss for y; € {0,1}:
= _*Z yilog(¥i) + (1 — yi)log(1 — 7))
i is a prediction for the sample i
Logarithmic loss for y; € {—1,1}:
1 m
= ™ Z |og(1 + e*,ViPi)

i=1

p; is a raw score from the model
j\/i :O'(p,‘),Vi € {1vam}



Feature engineering

Blocks: combination of two or more features

v

v

Counts: number of samples for different feature values

v

Counts unique: number of different values of one feature
for fixed value of another feature

v

Likelihoods: n;in L, where 0; = P(y; | xj = t)
t

Others

v



Feature engineering (algorithm 1)

o a7 -
function sPLITBYRowS(M)
x| oo get partition of the matrix M into
{M;} by rows such that each M; has
R ?;}‘ . ?;}s T xm identical rows
Step 1
Xaj e X, Require:

J={j,... s} € 1,0}
K={ki,...,kg} C{1,...,n}\J
Z+—(xpCcXie{l,2,...,m},jed

for I = {iy,...,ir} € SPLITBYROwWS(Z)
Cy=...=C,=Tr1
Yyt Tt Y

Piy = ... =P
by =..=b, =t
Ai=(xx) C X,ielLke K
T(At) = size(SPLITBYROWS(A;) )
Uy = ... = U, = T(A)




Feature engineering (algorithm 2)

function spLITBYRoOwS(M)
get partition of the matrix M into {M;} by rows such that
each M; has identical rows
Require:
parameter a > 0
J<+—(1,...,Js) C{1,...,n}
increasing sequence V «+ (vy,...,v)) C {1,...,8}, vy < s
Fe Y e m)
forveV crIrZ)
Jy=1{h, . wh Z=(x)Cc X, ie{1,2,....m},jedy
for I = {i,...,ir} € sSPLITBYROwWS(Z) do
Ci=...=C,=Tr
P, :”':p"’zu
w = o(—c + «) - weight vector
f,:(1 —W,)f,-l—W,p,,VIG {1,,m}




FTRL-Proximal model

Weight updates:

_ i 1
Wjrq = argmin <Z gr W+ 5> Trllw— WrIIS+A1|WH1> =
W \r=1 25

_ i 1 i
= argli/n (W~ > (gr — mrwr) + §|\W||§ SO 1+ Ml|wllq +const) ,

r=1 r=1

i
2
; B+ £ (g5)
where > 7 = = + o, jE{1,....N},
r=1 a
M, A2, «, B - parameters, 7, = (7,1, ...,Tyv) - learning rates,

gr - gradient vector for the step r



FTRL-Proximal Batch model

Require: parameters a, 3, A1, Ao
zi+0andnj < 0,vje{1,...,N}
fori=1to mdo
receive sample vector x; and let J = {j|x; # 0}
forjc Jdo

0 121 < A
1
W _ (ﬁ—i_ VI )\2> (Z/ — sign(zj)/\1) otherwise
o

predict y; = o(x; - w) using the w; and observe y;
if y € {0,1} then
forj e Jdo
g; = ¥i — yi - gradient direction of loss w.r.t. w;

4
7=~ (\n+92—vm)
2= Zj+ gj ~ TjW
nj=nj+ gy




Performance

e Leaderboard
Description
score

dataset is sorted by app id, site id, 0.3844277

banner pos, counti, day, hour
dat.aset is sprted by app domain, 0.3835289

site domain, count1, day, hour
dataset is sorted by person, day, hour 0.3844345
dataset is sorted by day, hour with 1 iteration 0.3871982
dataset is sorted by day, hour with 2 iterations | 0.3880423




Factorization Machine (FM)

Second-order polynomial regression:

j=1 k=j+1
Low rank approximation (FM):

a(z ST <>)

J=1 k=j+1

H is a number of latent factors



Factorization Machine for categorical dataset

Assign set of latent factors for each pair level-feature:

-1 n
N 23
Vi=o (nz D Wikt -5 Wgkt) (Wx,kjh---,Wx,ij))

j=1 k=j+1

o 1
Add regularization term: Lyeg = L + E)\HW||2
The gradient direction:

aLreg 2 ylefy/p/
x;kh = =——

OWy. kh n 14 evip Xl  AW;kh
ij

2
Learning rate schedule: Txjkh = Txjkh + (Qx,-,kh)

Weight update: Wy, = Wykh — @« \/ Tx;kh * Ox;kh



Ensembling

Model Description Leaderboard
score
frib1 dataset is sorted by app id, site id, 0.3844277
banner pos, count1, day, hour
ftrlo2 da’Faset is sprted by app domain, 03835289
site domain, counti, day, hour
ftrlo3 | dataset is sorted by person, day, hour | 0.3844345
fm factorization machine 0.3818004
ens fm®® . ftrlo1%7 . ftrlb2%-2 - ftrIb3° 0.3810447




Final results

Difference
Place Team Leaderboard between
score the 1st place

1 4 |diots 0.3791384 —

2 Owen 0.3803652 0.32%
3 Random Walker 0.3806351 0.40%
4 Julian de Wit 0.3810307 0.50%
5 Dmitry Efimov 0.3810447 0.50%
6 Marios and Abhishek | 0.3828641 0.98%
7 Jose A. Guerrero 0.3829448 1.00%




Future work

» apply the batching idea to the Factorization Machine
algorithm

» find a better sorting for the FTRL-Proximal Batch algorithm

» find an algorithm that can find better sorting without
cross-validation procedure
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Dmitry Efimov
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